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Abstract--The laminar natural convective heat transfer near a rectangular corner formed by the intersection 
of two vertical quarter-infinite flat plates is considered. For large Grashof numbers, the 'boundary-layer' 
equations in the corner layer are derived and appropriate boundary conditions are determined using the 
method of matched asymptotic expansions. Solutions of the equations are numerically obtained for velocity 
and temperature distributions for Prandtl numbers of 0.72 and 7.0. The cross-flow pattern is quite different 
from the high-Reynolds number flow along the corner; the simple inflow toward the comer appears, and 

the swirling motion in the corner is not found. 

1. I N T R O D U C T I O N  

TWO-DIMENSIONAL laminar natural convection boun- 
dary-layer flows have been extensively investigated 
both analytically and experimentally under various 
surface temperature conditions [1-5]. Many applica- 
tions in practice require the knowledge of natural 
convection flow near the surfaces which are composed 
of simple bodies such as flat plates and cylinders. Of 
particular interest is the fact that the heat transfer 
characteristics can be significantly affected by the 
mutual interaction of the boundary layers. Thus, two- 
dimensional free convection boundary-layer inter- 
actions have received considerable attention in the 
past. 

Merkin and Smith [6] analysed a natural convection 
boundary layer near two-dimensional corners and 
sharp trailing edges. Eichhorn and Hasan [7] cal- 
culated the mixed convection for flow over a wedge. 
Hartfield and Edwards [8] studied the effect of adia- 
batic wall extensions attached at the end of the down- 
ward facing heated horizontal plate. On the other 
hand, three-dimensional boundary-layer interactions 
have received little attention. Liu and Guerra [9] 
studied theoretically the natural convection flow in a 
saturated porous medium near a concave corner 
formed by two vertical quarter-infinite flat plates. 
They calculated temperature profiles and Nusselt 
number for a corner of various angles and discussed 
the interaction between the two plates. 

The present study analyses the natural convection 
heat transfer along a vertical rectangular corner. The 
corner layer equations which govern the behaviour of 
laminar natural convection flow near the corner are 
derived and appropriate boundary conditions are 
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determined using the method of matched asymptotic 
expansions similar to the scheme used by Rubin [10] 
for the incompressible high-Reynolds number flow 
along a rectangular corner. Numerical results by the 
finite difference method are presented for fluids with 
a Prandtl number of 0.72 (such as air) and 7.0 (such 
as water). 

2. ANALYSIS 

Consider the laminar natural convection flow along 
a rectangular corner depicted in Fig. 1. The flow is 
partitioned into the three regions (Fig. 1 (b)), since the 
characteristics of the flow in the respective regions are 
different; Region I away from twoplates is denoted 
as the potential flow, Regions II and III near the plates 
as the boundary layers, and Region IV near the corner 
as the corner layer. Region IV is a region of overlap 
of two boundary layers where the inflow of one plane 
becomes the secondary flow of the other. Solutions 
for the boundary layers and potential flow are 
obtained by the method of matched asymptotic 
expansions and the results are used as the asymptotic 
boundary conditions for the corner layer. 

2.1. Corner layer equations 
Using the Boussinesq approximation and neglecting 

the viscous dissipation in the fluid, the governing 
equations are given by 

Ou* ~v* ~w* 
~ + T f  + ~z =°  (la~ 

Du* 1 c~p* 
- +vV*2u*+g f l (T - -T , )  (lb) 

Dt p gx 
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N O M  ENCLATURE 

a 

Gr 
h 
k 
N , S  
Nu 
p* 

P 
Pr 
q 

r 
T 
T~ 

A T  
bl ~" , U ~ , 

bl~ U~ W 

iT, g, if' 

grid spacing parameter 
local Grashof  number,  gila Tx 3Iv 2 
local heat transfer coefficient 
thermal conductivity 
transformed independent variables 
local Nusselt number  
pressure in x, y, z coordinate system 
pressure in {, q, ~" coordinate system 
Prandtl number,  v/7 
local surface heat transfer rate per unit 
area 
magnitude of cross-flow velocity 
temperature 
wall temperature 
ambient  temperature 
temperature difference, T ~ -  T~ 

w* velocity components in x ,y , z  
directions 
velocity components  in ~, r/, 

directions 
velocity components  in boundary  layer 

U, V, W velocity components in the 
potential flow 

Uc 

x, y, z 
2 ,~ ,~  

convective velocity, ½(g[3ATx)~..2 
Cartesian coordinate defined in Fig. 1 
dimensionless variables. 

Greek symbols 

7 
0 
® 

/t 
V 

~,~,~ 

P 
"~w 

~'woo 

thermal diffusivity 
thermal expansion coefficient 
lim [r/J"(r/) - 3f(r/)] t/~zc 
dimensionless temperature 
direction of cross-flow velocity 
dynamic viscosity 
kinematic viscosity 
scaled independent variables (Fig. 1) 
density of fluid 
wall shear stress 
wall shear stress as ff --, 0% q/~ --+ 0 
velocity potential defined in equations 
(16) 
velocity potential for potential flow 
streamwise vorticity function defined in 
equations (17). 

Dr* 1 81)* 
- + vV*2v * (lc) 

Dt p ~3y 

Dw* 1 @* 
- + vV*2w * (ld) 

Dt p 8z 

D T  
- c~V*2T (le) 

Dt 

where 

D , 8  ~v 8 
~- U* W* - -  

Dt u ~?x + + 8z 

~,2 32 32 
V*2 = _ _  + - -  + 

- a x  2 8) ,  2 8 ~  2" 

The x-coordinate is measured vertically upward from 
the leading edge. 

For Gr >> 1, let us introduce the following scaled 
and non-dimensionalized variables for the flow in the 
corner layer (Region IV in Fig. 1) : 

(lg, U, W ) =  F u• U* (GF~ 1'4 w* (GE~'/4~ 

Lu/< \Tj  ' j 

p(q, ¢) = 

0 ( ~ ,  ¢)  = 

q = 

p u  g 

(T--T~)/(T,., . ,-T~o) 

xF(Gr'~'/4\4] ' ~ = x Z ( G r )  ''4 

(2) 

where r/ and ~ are the stretched similarity variables 
and Us denotes the convective velocity 

U~. = ½(gflATx)'"2. 

Substitution of equations (2) into equations (1) 
yields the 'boundary-layer '  equations appropriate to 
the problem (corner layer equation), when the most 
significant terms in each equation are retained 

1 
4 (qu. + ~u; -- 2u) + v, l + w; = 0 (3a) 

U 
- ,4 (qu ,+{uc-2u)+vu, ,+wu~ = V2u+40 (3b) 

U 
4 (tlv.+~v¢+v) +vv.+wvc = --p,j+VZv (3c) 

U 
--~(rlW,~+~w¢+w)+vw,~+ww¢ = - p ¢ + V 2 w  (3d) 

u ! 2 ~(tlO.+~O~)+vO.+wO: = p r v  0 (3e) 

where 

3 2 3 2 
V2 -- 8t/2 + ~ 2  
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FIG. l. Definition sketch : Region I, potential flow ; Regions 11 and III, boundary layers ; Region IV, corner 
layer. 

Thc system of  non- l inear  equat ions  (3) is to be 
solved t h r o u g h o u t  the region 0 ~< r/, ¢ ~< oc subject to 
the appropr ia te  bounda ry  condit ions.  

2.2. Boundary conditions 
In describing the bounda ry  condi t ions  for the 

corner  layer equat ions,  the following symmetry  
propert ies  are to be noted  : 

u(~, C) = .(C, ~) 

r o b  ~) = w(¢, r/) (4) 

o(q, C) = o(c, 7). 

2.2.1. Wall boundary conditions. The condi t ions  
on the wall are described simply by the no-slip and  
uniform wall t empera ture  condi t ions  

u = r = w = 0, 0 = 1 at q = 0 and  ~ = 0. 
(5) 

2.2.2. Far-field boundao, conditions as ~ ~c, 
qi~ - ,  0. The asymptot ic  bounda ry  condi t ions  for the 
corner  layer are convenient ly  de termined by requir ing 
the consis tent  match ing  with the bounda ry  layer f rom 
the corner.  The condi t ions  for u, v, and  0 are ob ta ined  
from the first-order bounda ry  layer solutions as 
z ~ 1). The condi t ion  for crossflow c o m p o n e n t  w as 

--+ ~c,, however,  can be posed only by consider ing 
the second-order  bounda ry  layer mo t ion  in Region 
II. The details of  the der iva t ion  are fairly involved 
and only the main  steps are given below, since 
the der ivat ion can be carried out  in parallel with 
Rubin  [10]. 

With  the known potent ia l  flow (u = v = w = 0, 
0 = 0), the first-order bounda ry  layer is in t roduced  in 
order  to satisfy the bounda ry  condi t ion  0 = 1 on the 
plates. As usual, the following scaled and  dimen-  

sionless variables are in t roduced : 

Fu* V* (Gr~ ' 4 w* (Gr~ ' ~] 

(6) 
(7 = (T- -  T .  )/(Tw -- T ,  ) 

(Gr t  I/4 
) . 

Note  tha t  only the ) , -coordinate is stretched whereas 
the x- and  z-coordinates  are unchanged.  

Subst i tu t ing equat ions  (6) into equat ions  (I)  and 
re ta ining the mos t  significant terms in each equat ion,  
the wel l-known two-dimensional  boundary  layer 
equat ions  are obta ined  

f f = 6 = O ,  

t7 {?~ &7 

t7 2 0~ &O Pc6 4(7 
2 2 + t ~ _  + - _ - + c.v t, ~ p - x ~ ? ,  .V 

aa au 1 {?-'g 
'~ a.e + t s a P  = P r - e a  f "• 

~7= 1 at  1 7 = 0  and  ~ = ( 7 - + 0  
as Y--+ oo. 

(7) 

The solut ion of  equat ions  (7) is given by 

a = 4 f ' ( ~ ) ,  t~ = ¢ / " ( ~ ) - 3 / ( ~ )  

0 = t(q) (8) 

where f ( t / )  and  t(r/) are the solut ions of  the natural  



1360 MAN Hon K1M and MOON-UHN KIM 

convection on a two-dimensional  vertical flat plate 

f " ( q )  + 3 f (q ) f ' ( r l )  - 2[f '(r/)]  2 + t(r/) = 0 

t"(~l) + 3Pr f (rl)t'(rl) = 0 (9) 

f(O) = f ' ( O ) = O ,  t(O)= 1, f ' ( o o ) = t ( o ~ ) = O .  

The asymptot ic  matching condit ion implies that  
solution (8) provides the corner-layer behaviour of  
u, v, and 0 as ( ~ oo. The remaining condit ion for w 
is determined by considering second-order boundary  
layer approximations.  On emerging from the bound-  
ary layer, solution (8) exhibits a normal velocity 

(~)--I /4 (~)--I /4 
U~ lim 50/) = 7 Uc for x > 0 

which is absent in zeroth-order  potential  flow. This 
velocity as well as the velocity on the opposite surface 
must  serve as a matching condit ion for the next-order  
potential  flow. Since the flow field outside the bound-  
ary layers must be irrotat ional ,  we write 

(u*,v*, w*) = ((I)~, ~ , ( ~ )  

= u ~ ( ~ r ) - ' / ~ ( u , v , w ) .  

The function (I) is harmonic 

V2(I) = 0 (10) 

and the boundary  conditions are, as a result of  the 
matching condit ions 

['Gr'W i/4 
* y = ' U o l ~ -  ) a t y = O + , x , z > O  

y = O + , x < ~ O , z > O  = 0  

1/4 

(1)~ = yU~ at  z = 0 + , x , y  > 0 

= 0  z=O+,x<~O,y>O.  

The solution of  equation (10) for x ,y , z  > 0 is given 
by 

2 12 3 

-~4 1(1 -~- 42) - 1/8 {(cos °~2 - sin ~ )  

2 , . 2 /  3 + s i n : 0 2 ) } ]  - - ( 1 + 4  ) / ( c o s ~ 0 z  

V(x,y,z) = 7(1 + 02) -  '/8 (cos  ~--£ - sin ~--3) 

where 
4 = y/x, ( =  z/x; 

01 = t a n  ~(, 02=tan-14 .  

The cross-flow component  of velocity appears as a 
result of  the mutual  interaction of the boundary layers 
and this leads to a second-order boundary layer flow. 

Since only the asymptotic  condit ion for w in the 
corner layer is of  interest, analysis of the secondary 
boundary layer will be limited to the cross-flow com- 
ponent  of velocity. The second-order boundary  layer 
equations for 9, 5, and 0-are in accord with that  of the 
two-dimensional vertical flat plate [12]. The equation 
governing the ~-distr ibution is obtained from equa- 
tion ( ld) ,  using the boundary  layer variables (6) 

tTv~ (3~ (3~ ~2~, 
- 4-~ + ~7~2 + 5~17 = £ ~ ' c r  

(12) 
~' = 0 at  I 7 = 0, ~' --. W(x, 0, z) as 17 ~ oc: 

where Wis  given by equations (11). 
For  small 4 and (, the asymptotic behaviour of W 

is given by 

W ~  y 1 4 32(2 . 

It may be assumed that, following Rubin [10] 

With 5 and 5 given by equations (8), the governing 
equation for H;( t l )  becomes 

H;" (rl) + 3 f (q)H ~)' (q) + f '  (q)H o(q) = 0 
03) 

H~,(0) = 0, H{)(oo) = 1. 

The asymptot ic  boundary  conditions as ~ -~ ~ for 
the corner layer are described finally as follows : 

u ~ 4f ' (r / ) ,  v ~ q f ' ( q ) -  3f(t/)  
(14) 

w ~ 7H'o(tl), 0 ~ t(rl). 

The conditions for the opposite plate can be 
obtained from symmetry conditions (4) ; as r / ~  oo, 
~/~ --, 0 

u ~ 4 f ' ( ( ) ,  v ~ 7H~(()  
(15) 

w ~ f ' ( ~ ) - - 3 f ( ( ) ,  0 ~ t ( ( ) .  

The corner layer problem is, thus, completely for- 
mulated by equations (3) and boundary  conditions 
(5), (14), and (15). 

The corner layer equations (3) are somewhat sim- 
plified by eliminating the pressure and introducing the 
'velocity potentials '  

r/u ~u 
q~ = ~-  -- v, tk = ~ - - -  w (16) 

and the streamwise vorticity 

t/ 
t~ = ~-49~ = ~u~ - ~ u ~ - ( w ~ - v ~ ) .  (17) 
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The resulting equations are given by 

V 2 u + ~ p u , + t p u ~  - ~u2+40 = 0 

V 2f~ + ~ fa ,  + qJfa~ + uf~ + B u(~u:  - ~u,  ) + ~ O. - tlO~ = 0 

V2(/~-]-~'~:--/,/~/ = 0 

V 2 q j - f l , - u ~  = 0 

1 
p r V 2 0  + O 0 ,  + O0~ = 0 

(18) 

and the transformed boundary  conditions are 

u = ~ h = ~ = O ,  ~ = g , , ,  0 = 1  a t ~ / = O  

u = O = O = O ,  ~ = - ~ ,  0 = 1  a t ~ = O  

u ~ 4 f ' ( r / ) .  q~ ~ 3 f ( r / ) ,  ~ ~ ~ ' f ' ( r / ) - ? H g ( r / )  

q~ ~ ~ . t " ' ( ~ l ) - T H o ' O 1 ) ,  0 ~ t(rl) as ~ ~ 

~ - r / . f " ( ~ ) + ? H ~ ( ( ~ ) ,  O ~ t ( ~ , )  a s r / ~ o c .  

(19) 

It is observed that the corner layer equations (18) 
and boundary conditions (19) are similar to those of 
Rubin  [10, 11] except that the temperature equation 
is coupled with the flow field. 

3. M E T H O D  OF SOLUTION 

Observation of the previous section shows that the 
computational  domain is an infinite region and corner 
layer variables ~b, ~, and D become unbounded as t/ 
or ~ ~ oo, which makes the numerical analysis of the 
problem somewhat inconvenient. 

In order to avoid these inconveniences, we intro- 
duce new corner layer variables 4~, q7, and 

6 = 6-~ f ' (O  
= ~' - ~ f '0 / )  (20) 

,Q = ff~ + q f " ( ¢ )  - C f " ( q )  

and transform the infinite region 0 ~< q, ¢ ~< oo into a 
finite region 0 ~< N, S ~< 1 

aq a~ 
N -  l+a~/ '  S =  l+a~"  (21) 

With the above transformations, we can impose the 
asymptotic boundary  conditions at true infinity and 
have the effect of  increasing the resolution near the 
corner where large gradients are expected. 

The final equations and boundary  conditions are 
written in terms of new defined variables and solved 
numerically by the alternate direction implicit scheme. 
The mesh size and grid spacing parameter that should 
have a negligible effect on the solution were chosen 
through many numerical experiments 

H = 0 . 0 2 ,  a = 0 . 2 .  

tt~ 

~'ii;::l I I I i /1  

:Jii t!/l, 

° 0 0  1 5  3 0  q 5  S 0  7 5  

(a) 
113 

tx'x. 

', 
°o o ~ s 3 o u s 61o 7 . s  

(b) 
FIG. 2. Streamwise isovels : (a) Pr - 0.72 : (b) Pr - 7.0. 

Computat ions were made only for the variables u, 
~,  q~, and 0 in the region 0 ~< N,S  ~< 1 and ~ was 
determined from the symmetry property, 
qT(N, S) = q~(S, U). 

The solution is considered to be converged when 
the difference in the values of the dependent variables 
from successive iterations was less than 10 4 at every 
grid point. 

4. RESULTS AND DISCUSSION 

The numerical results for P r  = 0.72 and 7.0 are 
presented in Figs. 2-6. Figure 2 shows the isolines for 
streamwise velocity u. Observation of the velocity u 
shows that there is an inner region in which u is smaller 
than the asymptotic two-dimensional value. In this 
region, the effect of  the coupling between the two 
plates leads to increasing the friction force and, there- 
fore, decreasing the streamwise velocity, but outside 
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(a) (a) 

td" 
" /  " 

r=1 
o ~ / ¢ ,¢ 

• -I ~ ; N ; ' ~  ;" - ' ; - " - - - " - - "  .0.6 . .  ~, 

(b) 

7.5 

(b) 

Magnitudes and directions of crossflow: (a) 
Pr  - 0.72; (b) P r  - 7.0. 

FIG. 3. 
F1G. 4. Isotherms: (a) Pr  - 0.72; (b) Pr  - 7.0. 

this region, the interaction of  the boundary layer 
increases the buoyancy effect and accordingly the 
velocity u. The closed contour which is not present in 
the high-Reynolds number flow along a corner appears 
in the vicinity of  the symmetry plane near the corner. 
This can be attributed to the increased amount  of  
flow entrainment near the corner due to the mutual 
interaction of  the two plates. The velocity boundary 
layer thickness has its maximum value at the sym- 
metry plane and becomes thinner as ff increases and 
ultimately approaches its asymptotic two-dimensional 
value. 

In Fig. 3, isolines o f r  = (u2-~ - 14 ,2) i / 2  the magnitude 
of  the crossflow and the direction ® = tan t ( v / w )  are 
plotted. The magnitude of  the crossftow, likewise the 
streamwise velocity, depends largely on Prandtl num- 
ber and becomes greater as the distance from the 
corner increases. It is observed that the crossflow is 

directed almost radially inward to the corner, and 
does not show the swirling motion which is present in 
the high-Reynolds number flow. Considering the law 
of conservation of  mass, this may also partly explain 
the presence of  the closed contour of  the streamwise 
isovels. 

Figure 4 shows the temperature profiles for 
P r  = 0.72 and 7.0. The numerical results can be 
accurately (within 2% error) represented in terms 
of the solution of  the natural convection on the two- 
dimensional vertical plate 

l - 0 ( r / , ~ )  = [ 1 - t ( q ) ] [ 1 - t ( ~ ) ]  (22) 

which is the solution of  the following equation : 

1 2 
~rr V O + 3 f ( q ) O , + 3 f ( ~ ) O  c = 0. (23) 
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U3 

t O  
=:- 

C~ 
. -  

CO 

uJ- 

0.L~ 
/-~L,...._ 0.1 

E3 

' - I  ~ I 
%.o l'.s 3.o slo 7 . s  

(a)  

~.0 1.5 3.0 4.5 B.O 7.5 < 
(b) 

FIG. 5. lsolines of "velocity potential', 4, : (a) Pr = 0.72 ; (b) 
Pr = 7.0. 

The approximate  equat ion  for 0, equa t ion  (23), can 
be ob ta ined  from the following observat ion.  Fo r  large 

and  finite ;7, the term 00~ is much  smaller than  q~0, 
since 0; ~ 0 for large ~. Also, as shown in Fig. 5, 
0(t/, ~) is nearly equal  to 3f( t / ) ,  the asymptot ic  two- 
d imensional  value of~b, for ~ > q. Near  the corner,  the 
conduc t ion  term in energy equa t ion  (18) is dominan t .  
Tak ing  into account  the symmetry  proper ty  and  the 
above observat ions,  we may approximate  energy 
equa t ion  (18) to obta in  equa t ion  (23). 

Local heat  t ransfer  coefficients are available f rom 
the numerical  solution. By definit ion 

k ~ T  
q =  - -~,y-b.=o = hCTw-- T ~ ) .  

U3 

U3 

O 

Pr =0.7Z 

7.0 

7.0 

0.7 Z 

- ' 7  

7.5 %]0 11s £o 41s 

FIG. 6. Local Nusselt numbers and shear stresses: -*- * , 
Nu(O,~)(Gr/4) t/4; __ , r~(0,~')(J"'(0),,'r~, ). 

The local Nussel t  n u m b e r  is 

h x  0,(0, ~) (24) 
N u -  k - 

In a similar fashion,  the local shear stress on the 
plate results in, neglecting the effect of the secondary 
flow 

= = . , ( 0 ,  125) 

where %~ is the asymptot ic  two-dimensional  value 

~w~ = x ~ f " ( 0 )  

Figure 6 shows N u  and r,, for Pr = 0.72 and 7.0. 
The local Nusselt  n u m b e r  Nu is zero at the corner  line 
due to the symmetry of  the tempera ture  a long the 
corner  bisector, and  increases monotonica l ly  to 
app roach  its asymptot ic  two-dimensional  value. The 
local shear stress which is also zero at  the corner  line 
a t ta ins  its m a x i m u m  value at  a certain distance from 
the vertex and  then decreases to its asymptot ic  value 
cor responding  to the two-dimensional  na tura l  con- 
vection problem.  Consider ing the streamwise velocity 
profiles, it is found tha t  the ~-position of  max imum 
shear  stress is a lmost  coincident  with the posi t ion 
where the velocity u becomes largest. The var ia t ions  
of  the local Nussel t  n u m b e r  and  shear stress with 
Prandt l  n u m b e r  can be seen clearly in the figure. 
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C O N V E C T I O N  N A T U R E L L E  PRES D ' U N  COIN 

R6sum&---On consid6re le transfert thermique par convection naturelle laminaire au voisinage d 'un  coin 
form6 par l 'intersection de deux plans verticaux. Pour un grand nombre de Grashof les  6quations de couche 
limite sont d6riv6es et des conditions aux limites appropri6es sont d6termin6es. Des solutions de ces 
6quations sont  obtenues num6riquement  pour les distributions de vitesse et de temp6rature, le nombre de 
Prandtl variant entre 0,72 et 7,0. Les configurations sont  tr6s diff6rentes de celles relatives 5. l '6coutement 
pour  des nombres  de Reynolds 61ev6s: on constate un bcoulement simple d'entr6e et le mouvement  de 

tourbil lonnement dans le coin n'existe pas. 

N A T O R L I C H E  K O N V E K T I O N  IN EINER R E C H T W I N K L I G E N  ECKE 

Znsammenfassung- -Es  wird die laminare natfirliche Konvektion in einer rechtwinkligen Ecke untersucht,  
die aus zwei vertikalen viertels-unendlichen ebenen Platten gebildet wird. F/Jr grol3e Grashof-Zahlen 
werden die Grenzschichtgleichungen ffir die Eckenstr6mung hergeleitet. Entsprechende Randbedingungen 
werden best immt unter Verwendung der Methode der angepal3ten Reihenentwicklung. Es werden 
numerische L6sungen der Gleichungen f/Jr das Geschwindigkeits- und Temperaturfeld fiir die Prandtl- 
Zahten 0,72 und 7,0 ermittelt. Das Kreuzstr6mungsverhal ten ist ziemlich verschieden v o n d e r  Str6mung 
entlang der Ecke bei grol3en Reynolds-Zahlen. Das einfache Einstr6mungsverhalten in die Ecke erscheint. 

Die Wirbels t r6mung in der Ecke wurde nicht gefunden. 

ECTECTBEHHAJ:I  KOHBEKI_[H,q BBJIH3H ] I B Y F P A H H O F O  YF.rIA 

AmIOTa~--PaCCMaTp~lBaeTca Ten~onepcHoc npn JlaMHaapHo~ eCTeCTBeHHO~ KOHBeKIIHH BS~13~! ~Byr- 
panuoro  npaMoro yraa,  o6pa3oaannoro nepeceqenHeM /IByX BepTnra~bn~IX qeTaepTb-6ecroueqHbIX 
naocrxx  n~acTMn. ] laa  6oabmnx 3naqennfi qncaa Fpacrodpa 3anncanbi ypaanenaa  norpannqnoro  cao~ 
]IJIfl )KHJIKOCTH B6.rlH3rl yr~a n c HCHOJIB3OBaHHeM MeTOlla cpaulHBaeMblX aCHMHTOTHqeCKI, IX pa33/O;,KeHHfi 
onpeae,eHb~ COOTBeTCTBytOtUHe rpaHnqHbIe yC.~OBHS, qHC.~eHHbIM pemeHHeM 3THX ypaBHeHHfi no3ly- 
qeHbl pacnpe~Ie~eHna cKopocTH H TeMnepaTypbt npH nnc.rtax l-lpaH~lTaS, paBHbIX 0,72 n 7,0. Te,~enne B 
nonepe,tHOM HanpaB31eHHH HMeeT COBepmeHHO /lpyrofi xapaKTep, He~e31H TeqeHHe B HpO210.rlbHOM Han- 
paBneHHH. Hpn  6OYlblIIOM 3HaqeHHH qHCJla PefiHOJIb21ca HMeeT MeCTO npocToe 6e3BHXpeBoe TeqeHHe no 

nanpaa~eHnrO r pe6py yr~a. 


